Flowering with UnderCurrentDWC

woodsmaneh!

Well-Known Member
50% is safe but your plants will take more and in return produce more. Much like feeding them, a little tip burn is not a bad thing, just means you reached the limit they can take. Some people will tell you to cut back because you have tip burn but IMHO experienced growers know it's a good sign as they are maxed out on food, which is good. Same with humidity 50% is safe but not optimum for growth. There are all kinds of things that come into play that not a lot of people know or think about. Have you ever looked for the nutrient uptake profile for a plant? Just doing my part to push the envelope in getting the info out there.....Here is a little more on the subject,

Plantworks: Part 1 – Humidity and Vapor Pressure Deficit
By Urban Garden Magazine ⋅ July 12, 2010 ⋅“Think like a plant.”

Have you ever been given this odd-sounding advice? Even when we are encouraged to try and understand how plants work, our inherent tendency to personify the natural world is inescapable. Growers often like to draw parallels between humans and plants, after all, there’s no doubt that plants are marvellous, highly specialized and well-adapted organisms. You might even go as far to say they are “intelligent.” But let’s be honest here. Plants are totally different from us, especially in the way they react and respond to their environment. However, if we can get our heads around the world from a plant’s perspective, we become what is commonly referred to as “green-fingered.” We become … better growers.Have you ever wondered how plants “feel” humidity? An understanding of what humidity is, what it means to plants, and how you can manage it in your indoor garden will help you and your plants stay happy all year round.The humidity of the air is basically the amount of water in the air. Water can only truly stay in the air when it is the invisible gas – water vapour. Small droplets of water in air, such as fog or mist, are not water vapor; they are simply larger particles of water temporarily suspended in the air that are ready to be turned into water vapour by evaporation.Temperature plays an important role when it comes to humidity. The warmer the air, the more water vapour it can hold. This means the maximum amount of water that air can hold is directly related to the temperature of the air. As the amount of water air can hold constantly changes with temperature it is difficult to pin an absolute or fixed amount of water that can be held by air. So what’s the best way to quantify humidity if the goal posts are changing all the time? The answer is something called Relative Humidity (RH) – this is a measure in terms of percentage, of the water vapor in the air compared to the total amount of water vapor that the air could potentially hold at a given temperature.

Why is RH so important?
As growers we measure the RH of our gardens using digital or analogue hygrometers. These readings are very important because RH has a direct effect on the plant’s ability to transpire and therefore grow. Generally, plants do not like to lose lots of water through transpiration. Plants have some degree of control of their rate of transpiration through management of their stomata but the general rule is the drier the air, the more plants will transpire.Now let’s move on to the idea of “pressure” – this is an important concept to grasp when it comes to understanding a plant’s response to humidity. All gasses in the air exert a pressure. The more water vapor in the air the greater the vapor pressure. This means that in high RH conditions there is a greater vapor pressure being exerted on plants than in low RH conditions. High vapor pressure can be thought of as a force in the air pushing on the plants from all directions. This pressure is exerted onto the leaves by the high concentration of water vapor in the air making it harder for the plant to ‘push back’ by losing water into the air by transpiration. This is why with high RH plants transpire less. Conversely, in environments with low RH, only a small amount of pressure is exerted on the plants’ leaves, making it easy for them to lose water into the air.

What is Vapor Pressure Deficit (VPD)?
VPD can be defined as the difference (or deficit) between the pressure exerted by water vapor that could be held in saturated air (100% RH) and the pressure exerted by the water vapor that is actually held in the air being measured.The VPD is currently regarded of how plants really ‘feel’ and react to the humidity in the growing environment. From a plant’s perspective the VPD is the difference between the vapor pressure inside the leaf compared to the vapor pressure of the air. If we look at it with an RH hat on; the water in the leaf and the water and air mixture leaving the stomata is (more often than not) completely saturated -100% RH. If the air outside the leaf is less than 100% RH there is potential for water vapor to enter the air because gasses and liquids like to move from areas of high concentration (in this example the leaf) into areas of lower concentration (the air). So, in terms of growing plants, the VPD can be thought of as the shortage of vapor pressure in the air compared to within the leaf itself.Another way of thinking about VPD is the atmospheric demand for water or the ‘drying power’ of the air. VPD is usually measured in pressure units, most commonly millibars or kilopascals, and is essentially a combination of temperature and relative humidity in a single value. VPD values run in the opposite way to RH vales, so when RH is high VPD is low. The higher the VPD value, the greater the potential the air has for sucking moisture out of the plant.As mentioned above, VPD provides a more accurate picture of how plants feel their environment in relation to temperature and humidity which gives us growers a better platform for environmental control. The only problem with VPD is it’s difficult to determine accurately because you need to know the leaf temperature. This is quite a complex issue as leaf temperature can vary from leaf to leaf depending on many factors such as if a leaf is in direct light, partial shade or full shade. The most practical approach that most environmental control companies use to assess VPD is to take measurements of air temperature within the crop canopy. For humidity control purposes it’s not necessary to measure the actual leaf VPD to within strict guidelines, what we want is to gain insight into is how the current temperature and humidity surrounding the crop is affecting the plants. A well-positioned sensor measuring the air temperature and humidity close to, or just below, the crop canopy is adequate for providing a good indication of actual leaf conditions.

Managing Humidity

View attachment 1969434

Managing the humidity in your indoor garden is essential to keep plants happy and transpiring at a healthy rate. Transpiration is very important for healthy plant growth because the evaporation of water vapor from the leaf into the air actively cools the leaf tissue. The temperature of a healthy transpiring leaf can be up to 2-6°C lower than a non-transpiring leaf, this may seem like a big temperature difference but to put it into perspective around 90% of a healthy plant’s water uptake is transpired while only around 10% is used for growth. This shows just how important it is to try and control your plants environment to encourage healthy transpiration and therefore healthy growth.So what should you aim to keep your humidity at? Many growers say a RH of 70% is good for vegetative growth and 50% is good for generative (fruiting /flowering) growth. This advice can be followed with some degree of success but it’s not the whole story as it fails to take into account the air temperature.

Humidification systems to increase RH.
Table 1 shows the VPD in millibars at various air temperatures and relative humidity. Most cultivated plants grow well at VPDs between 8 and 10, so this is the green shaded area. Please note that the ideal VPD range varies for different types of plants and the stage of growth. The blue shaded are on the right indicates humidification is needed where the red shaded area on the left indicates dehumidification is needed.View attachment 1969404By looking at this example we can see that at 70% RH the temperate should be between 72-79°F (22-26°C) to maintain healthy VPDs. If your growing environment runs on the warm side during summer, like many indoor growers, a RH of 75% should be maintained for temperatures between 79-84°F (26-29°C.)The problem with running a high relative humidity when growing indoors it that fungal diseases can become an issue and carbon filters become less effective. It is commonly stated that above 60% RH the absorption efficiency drops and above 85% most carbon filters will stop working altogether. For this reason it is good practice to run your RH between 60-70% with the upper temperature limit depending on your crop’s ideal VPD range, in the example it would be 64-79°F (18-26°C.)The table also shows that if your temperature is above 72°F (22°C), 50% RH becomes critically low and should generally be avoided to minimize plant stress.Please understand that by presenting this information we do not want you to go to your indoor gardens and run your growing environment to within strict VPD values. What’s important to take from this is that VPD can help you provide a better indication of how much moisture the air wants to pull from your plants than RH can. If you want to work out for yourself the VPD of your plants leaves you can follow the steps below:
  1. Measure the leaf temperature and look up the vapor pressure at 100% RH on table 2 below.
  2. Measure the air temperature and relative humidity and look up the nearest vapor pressure figure on table 2.
  3. Subtract the air vapor pressure from the leaf vapor pressure
Example:Leaf Temperature = 24°C (100% RH) Leaf VP: 29.8Air Temperature = 25°C @ 60% RH Air VP: 19.0VPD= 10.8

Humidity’s Effect on Plants

Plants cope with changing humidity by adjusting the stomata on the leaves. Stomata open wider as VPD decreases (high RH) and they begin to close as VPD increases (low RH). Stomata begin to close in response to low RH to prevent excessive water loss and eventually wilting but this closure also affects the rate of photosynthesis because CO2 is absorbed through the stomata openings. Consistently low RH will often cause very slow growth or even stunting. Humidity therefore indirectly affects the rate of photosynthesis so at higher humidity levels the stomata are open allowing co2 to be absorbed.When humidity gets too low plants will really struggle to grow. In response to high VPD plants will try to stop the excessive water loss from their leaves by trying to avoid light hitting the surface of the leaf. They do this by rolling the leaf inwards from the margins to form tube like structures in an attempt to expose less of the leaf surface to the light, as shown in the photo.For most plants, growth tends to be improved at high RH but excessive humidity can also encourage some unfavourable growth attributes. Low VPD causes low transpiration which limits the transport of minerals, particularly calcium as it moves in the transpiration stream of the plant – the xylem. If VPD is very low (95-100% RH) and the plants are unable to transpire any water into the air, pressure within the plant starts to build up. When this is coupled with a wet root zone, which creates high root pressure, it combines to create excessive pressure within the plant which can lead to water being forced out of leaves at their edges in a process called guttation. Some plants have modified stomata at their leaf edges called hydathodes which are specially adapted to allow guttation to occur. Guttation can be spotted when the edges of leaves have small water droplets on, most evident in early morning or just after the lights have come on. If you see leaves that appear burnt at the edges or have white crystalline circular deposits at the edges it could be evidence that guttation has occurred.

Powdery Mildew from poor humidity control.
Most growers are well aware that with high humidity comes and increased risk of fungal diseases. Water droplets can form on leaves when water vapor condenses out of the air as temperature drops, providing the perfect breeding ground for diseases like botrytis and powdery mildew. If humidity remains high it further promotes the growth of fungal diseases. The water droplet exuded through guttation also creates the perfect environment for fungal spores to germinate inviting disease to take hold.Quick reference chart:

Low VPD / High RHHigh VPD / Low RH
Mineral deficienciesWilting
GuttationLeaf roll
DiseaseStunted plants
Soft growthLeathery/crispy leaves

So hopefully now you are not just ‘thinking like a plant’ – you’re ‘feeling it’ too!
 

UnderCurrentDWC

Active Member
Thx for all the info woods!
My flower room is under negative pressure, I wonder if that has some effect on VPD absorption rates. Anyway I turned up my dehu to 60.... the airs so dry right now I don't think i could get it over 50% without adding a humidifier.

 

UnderCurrentDWC

Active Member
[video=youtube;VvcohzJvviQ]http://www.youtube.com/watch?v=VvcohzJvviQ[/video]​

12/12
280ppm
5.9Ph
65-85*F
45-50%Rh
61*F h20

I'm trying a new feed schedule this time. I mix 60 gallons of nutes every week upping the ppm by 50-100 per week. I fill 50 gallons back into the system, than mix the leftover 10 gallons with more water to make the rest of what the plants will drink during the week. So far the ppms drop everyday the ph fluxuates a little +-.4 but I think the plants still look great at the end of the week when the ppm's are lowest.














 

UnderCurrentDWC

Active Member
Looking Great! Very clean setup. Are you gonna cut the undergrowth leaves?
Yes

I've been waiting a month to get more STG hail (:cuss:GDSOB'S) I was wanting to take cuttings from the lower leaves than lollypop some more, but now it's been so long I don't know if I even want to keep reveged clones, I might just crack some seeds, I wanted to get some new strains from the clubs but apparently they've all been closed down around here.







 

UnderCurrentDWC

Active Member
[video=youtube;jwOYHi3KJAs]http://www.youtube.com/watch?v=jwOYHi3KJAs[/video]

Start of week 3​

12/12
605ppm
5.7Ph
65-75*F
35-50% Rh
63*F h2o

Rez change

60 gallon Ph'd flush for 2-3 hours.

50 gallons of water
14Tbl SuperNatural aqua bloom
20ml Drip clean
20ml C/mag
3ml Ph down




60 gallons of nutes ready to go.



I've pulled most of the flush water out of the system with a submersible pump.



Now I'm ready to fill the Uc system with fresh nutes for the week.




I'll pause along the way, than fill to the desired level



I than plug in the water pump



Than the air pump, and close her up




I now have 10 gallons left over, I add water to make what I will feed for the rest of the week




While the supply rez is filling I check my roots









Everything looks good!.. nice and white, I check the stalks and underscrog








It could use some trimming up,.... I still haven't decided if I'm going to take clones or not,

I than check the canopy


















I decided to raise the light an inch and turn the box fan to high.
Things are looking good internodes are tight, bud set is happening and the plants look healthy.

By now the water has filled to where I want it and I'm ready for tomorrow and the rest of the week.

 

dtischerd

Well-Known Member
hey UCDWC..how you liking those Sunleaves 8" air stones.

i have 1 in each 5 gallon bucket..i think they work great..i like them :D
 

UnderCurrentDWC

Active Member
You might want to have a look at some of the comments over here on air stones.

https://www.rollitup.org/hydroponics-aeroponics/458316-quantitative-airstone-test-end-hype-10.html#post6934135

I looked up the sun leaves stone and it looks great, the price is kind of high but the better stones are. I like the 9" flexair but they make a 7" also you will find the info at the link ^^^^^^^^

Peace

Great looking grow.....

Thanks woods!

I do fallow that thread, I link it in my sig, I really like the 9" diffuser your using I bet you can't wait to replace all your stones with them.

Have you taken a look at sqydro's grow? He's rigged his to where the water falls into his grow buckets creating his D.o.? He gets by without air pumps and stones, pretty interesting to me. My next project will be a small Uc for 2 week old clones to flower and I'm going to try this method out.

 

sqydro

Active Member
beautifull mate just stunning looks like you have them dialed this time and i dont have too look through black lines lol ++rep mate be good to see this unfold! do you think the scrogging helps in these systems im defo going for some mod scrogging action next grow, then i wont have to worry about height lol
 

UnderCurrentDWC

Active Member
do you think the scrogging helps in these systems im defo going for some mod scrogging action next grow, then i wont have to worry about height lol
Yeah, hight is an issue for me as well. I veg for about 2 months from cut and end up about maxed out for space by the end of flower. I think scroging is good for me in my situation with horizontal lighting and limited hight. I also have 2 sour-d plants in there without a scrog that are doing great but I'll see what happens when everything gets heavy I'm sure the scrog plants will be better off. I find the best thing for hight issues is Fim topping at 3-5 nodes when it's young.

 

UnderCurrentDWC

Active Member
Week 4

[video=youtube;KkAYp1DatrA]http://www.youtube.com/watch?v=KkAYp1DatrA[/video]


12/12
640ppm
6.0Ph
60-74*F
35-50%Rh
63*F h2o

Rez change

50 gallons Ph'd flush for 4 hours

60 gallons water
16Tbl SuperNatural Aqua Bloom
20ml Drip clean
3ml ph down














I soaked some seeds on monday, 7 days later I have 10 poking through.
This time I'll be working with Purple Urkle, Sensi Star, and Jack Frost










 

SFguy

Well-Known Member
bro tht bmx vid was SICK.!!! I HAVE A NICE GARY FISHERi love to ride also, but those guys are nuts.. im a bit slower, i broke my face in crash 2-3 yrs ago, on my mountain bike shit has never been the same man for real, eating, talking, smiling, laughing, anything that didnt matter before now, immensley diffrent
 
Top