awesomesound
Active Member
this study might clear this up there are 2 specific Terpens that are affected, no tests or studies have been done on inhaled products, BUT there have be many tests of gamma on many Herbs so now your spliting hairs, one of these Terpens is β-Myrcene which can affect infflamation properties. enjoy the easy reading LOLThere is nothing but anecdote for the terpenes having an effect. There is no clinical evidence that it is anything other than "I prefer lemon cough syrup to cherry" or making aspirin for kids that is chewable and orange flavoured. If you know of any actual clinical studied showing otherwise, I would like to read them and would sit corrected. I hope GW Pharma & Bedrocan are beavering away and such studies so we can finally have some statistically sound evidence.
Any MM supplier that makes flavour claims should back it up with GC data showing proper QC.
Government-approved cannabis supplied to patients in national programmes in the Netherlands and Canada is gamma-irradiated to sterilize coliform bacteria, but the safety of this technique for a smoked and inhaled product has never been specifically tested. Gamma-radiation significantly reduced linalool titres in fresh cilantro (Fan and Sokorai, 2002), and myrcene and linalool in orange juice (Fan and Gates, 2001).
β-Myrcene is another common monoterpenoid in cannabis (Table 2) with myriad activities: diminishing inflammation via prostaglandin E-2 (PGE-2) (Lorenzetti et al., 1991), and blocking hepatic carcinogenesis by aflatoxin (De-Oliveira et al., 1997). Interestingly, myrcene is analgesic in mice, but this action can be blocked by naloxone, perhaps via the α-2 adrenoreceptor (Rao et al., 1990). It is non-mutagenic in the Ames test (Gomes-Carneiro et al., 2005). Myrcene is a recognized sedative as part of hops preparations (Humulus lupulus), employed to aid sleep in Germany (Bisset and Wichtl, 2004). Furthermore, myrcene acted as a muscle relaxant in mice, and potentiated barbiturate sleep time at high doses (do Vale et al., 2002). Together, these data would support the hypothesis that myrcene is a prominent sedative terpenoid in cannabis, and combined with THC, may produce the ‘couch-lock’ phenomenon of certain chemotypes that is alternatively decried or appreciated by recreational cannabis consumers.
D-Linalool is a monoterpenoid alcohol (Table 2), common to lavender (Lavandula angustifolia), whose psychotropic anxiolytic activity has been reviewed in detail (Russo, 2001). Interestingly, linalyl acetate, the other primary terpenoid in lavender, hydrolyses to linalool in gastric secretions (Bickers et al., 2003). Linalool proved sedating to mouse activity on inhalation (Buchbauer et al., 1991; Jirovetz et al., 1992). In traditional aromatherapy, linalool is the likely suspect in the remarkable therapeutic capabilities of lavender EO to alleviate skin burns without scarring (Gattefosse, 1993). Pertinent to this, the local anaesthetic effects of linalool (Re et al., 2000) are equal to those of procaine and menthol (Ghelardini et al., 1999). Another explanation would be its ability to produce hot-plate analgesia in mice (P < 0.001) that was reduced by administration of an adenosine A2A antagonist (Peana et al., 2006). It is also anti-nociceptive at high doses in mice via ionotropic glutamate receptors (Batista et al., 2008). Linalool demonstrated anticonvulsant and anti-glutamatergic activity (Elisabetsky et al., 1995), and reduced seizures as part of Ocimum basilicum EO after exposure to pentylenetetrazole, picrotoxin and strychnine (Ismail, 2006). Furthermore, linalool decreased K+-stimulated glutamate release and uptake in mouse synaptosomes (Silva Brum et al., 2001). These effects were summarized (Nunes et al., 2010, p. 303): ‘Overall, it seems reasonable to argue that the modulation of glutamate and GABA neurotransmitter systems are likely to be the critical mechanism responsible for the sedative, anxiolytic and anticonvulsant properties of linalool and EOs containing linalool in significant proportions’. Linalool also proved to be a powerful anti-leishmanial agent (do Socorro et al., 2003), and as a presumed lavender EO component, decreased morphine opioid usage after inhalation versus placebo (P = 0.04) in gastric banding in morbidly obese surgical patients (Kim et al., 2007).
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165946/
Last edited: