1. Introduction
They call them “wet scrubbers” – the pollution control devices used by the phosphate industry to capture fluoride gases produced in the production of commercial fertilizer.
In the past, when the industry let these gases escape, vegetation became scorched, crops destroyed, and cattle crippled.
Today, with the development of sophisticated air-pollution control technology, less of the fluoride escapes into the atmosphere, and the type of pollution that threatened the survival of some communities in the 1950s and 60s, is but a thing of the past (at least in the US and other wealthy countries).
However, the impacts of the industry’s fluoride emissions are still being felt, although more subtly, by millions of people – people who, for the most part, do not live anywhere near a phosphate plant.
That’s because, after being captured in the scrubbers, the fluoride acid (hydrofluorosilicic acid), a classified hazardous waste, is barreled up and sold, unrefined, to communities across the country. Communities add hydrofluorosilicic acid to their water supplies as the primary fluoride chemical for water fluoridation.
Even if you don’t live in a community where fluoride is added to water, you’ll still be getting a dose of it through cereal, soda, juice, beer and any other processed food and drink manufactured with fluoridated water.
Meanwhile, if the phosphate industry has its way, it may soon be distributing another of its by-products to communities across the country. That waste product is radium, which may soon be added to a roadbed near you – if the EPA buckles and industry has its way.
2. Effects of Fluoride Pollution
Central Florida knows it well. So too does Garrison Montana, Cubatao Brazil, and any other community where phosphate industries have had inefficient, or non-existent, pollution control: Fluoride.
Hirzy JW. (2000). Video-taped interview with Dr. J. William Hirzy, Senior Vice President, EPA Headquarters Union. Interview by Michael Connett. July 3.
Hodge HC, Smith FA. (1977). Occupational fluoride exposure. Journal of Occupational Medicine 19: 12-39.
Lillie RJ. (1970). Air Pollutants Affecting the Performance of Domestic Animals: A Literature Review. U.S. Dept. of Agriculture. Agricultural Handbook No. 380. Washington D.C.
Masters R, et al. (2000). Association of Silicofluoride Treated Water with Elevated Blood Lead. Neurotoxicology 21(6): 1091-1099.
Masters RD, Coplan M. (1999). Water treatment with Silicofluorides and Lead Toxicity. International Journal of Environmental Studies 56: 435-449.
Shupe JL. (1970). Fluorine toxicosis and industry. American Industrial Hygiene Association Journal 31: 240-247.
Urbansky ET, Schock MR. (2000). Can Fluoridation Affect Water Lead(II) Levels and Lead(II) Neurotoxicity? United States Environmental Protection Agency (EPA), Office of Research and Development, National Risk Management Research Laboratory, Water Supply and Water Resources Division, Cincinnati, Ohio.
Weinstein LH. (1983). “Effects of Fluorides on Plants and Plant Communities: An Overview.” pp. 53-59. In: Shupe JL, Peterson HB, Leone NC, (Eds). Fluorides: Effects on Vegetation, Animals, and Humans. Paragon Press. Salt Lake City, Utah.
Westendorf J. (1975). The kinetics of acetylcholinesterase inhibition and the influence of fluoride and fluoride complexes on the permeability of erythrocyte membranes. Ph.D. Dissertation in Chemistry, University of Hamburg, Germany.
Print Friendly Version of this pagePrint Get a PDF version of this webpagePDF
Tags: phosphate industry, Silicofluorides
The Canadian Broadcasting Corporation (CBC) called the phophate industry a “pandora’s box.” While the industry brought wealth to rural communities, it also brought ecological devastation. The CBC described the effects of one particular phosphate plant in Dunville, Ontario:
“Farmers noticed it first… Something mysterious burned the peppers, burned the fruit, dwarfed and shriveled the grains, damaged everything that grew. Something in the air destroyed the crops. Anyone could see it… They noticed it first in 1961. Again in ’62. Worse each year. Plants that didn’t burn, were dwarfed. Grain yields cut in half…Finally, a greater disaster revealed the source of the trouble. A plume from a silver stack, once the symbol of Dunville’s progress, spreading for miles around poison – fluorine. It was identified by veterinarians. There was no doubt. What happened to the cattle was unmistakable, and it broke the farmer’s hearts. Fluorosis – swollen joints, falling teeth, pain until cattle lie down and die. Hundreds of them. The cause – fluorine poisoning from the air.”
Fluoride has been, and remains to this day, one of the largest environmental liabilities of the phosphate industry. The source of the problem lies in the fact that raw phosphate ore contains high concentrations of fluoride, usually between 20,000 to 40,000 parts per million (equivalent to 2 to 4% of the ore).
When this ore is processed into water-soluble phosphate (via the addition of sulfuric acid), the fluoride content of the ore is vaporized into the air, forming highly toxic gaseous compounds (hydrogen fluoride and silicon tetrafluoride).
A cow crawling on his front two legs as a result of crippling fluoride poisoning.
In the past, when the industry had little, if any, pollution control, the fluoride gases were frequently emitted in large volumes into surrounding communities, causing serious environmental damage.
In Polk County, Florida, the creation of multiple phosphate plants in the 1940s caused damage to nearly 25,000 acres of citrus groves and “mass fluoride poisoning” of cattle. It is estimated that, as a result of fluoride contamination, “the cattle population of Polk County dropped 30,000 head” between 1953 and 1960, and “an estimated 150,000 acres of cattle land were abandoned” (Linton 1970). According to the former president of the Polk County Cattlemen’s Association:
“Around 1953 we noticed a change in our cattle… We watched our cattle become gaunt and starved, their legs became deformed; they lost their teeth. Reproduction fell off and when a cow did have a calf, it was also affected by this malady or was a stillborn.”
In the 1960s, air pollution emitted by another phosphate plant in Garrison, Montana was severe enough to be branded “the worst in the nation” by a 1967 National Air Pollution Conference in Washington, D.C.
As in Polk County, and other communities downwind of fluoride emissions, the cattle in Garrison were poisoned by fluoride. As described in a 1969 article from Good Housekeeping:
“The blight had afflicted cattle too. Some lay in the pasture, barely able to move. Others limped and staggered on swollen legs, or painfully sank down and tried to graze on their knees… Ingested day after day, the excessive fluoride had caused tooth and bone disease in the cattle, so that they could not tolerate the anguish of standing or walking. Even eating or drinking was an agony. Their ultimate fate was dehydration, starvation – and death.”
3. Litigation from Fluoride Damage
Damage to vegetation and livestock, caused by fluoride emissions from large industry, has resulted, as one might expect, in a great deal of expensive litigation. In 1983, Dr. Leonard Weinstein of Cornell University, stated that “certainly, there has been more litigation on alleged damage to agriculture by fluoride than all other pollutants combined” (Weinstein 1983). While Weinstein was referring to fluoride pollution in general, his comments give an indication of the problem facing the phosphate industry – one of the most notorious emitters of fluoride – in its early days.
So too does an estimate from Dr. Edward Groth, currently a Senior Scientist at Consumers Union. According to an article written by Groth, fluoride pollution between the years 1957 to 1968, “was responsible for more damage claims against industry than all twenty (nationally monitored air pollutants) combined.”
P.S. will be answering all stupid comments with what you morons can't find yourself!!! Glad I could help you learn something, if we wake up enough people we might not end up micro chipped slaves with a ONE WORLD SOCIALIST GOVERNMENT!