"Effect of Nutrient Mobility on Symptom Development
The interaction between nutrient mobility in the plant, and plant growth rate can be a major factor influencing the type and location of deficiency symptoms that develop. For very mobile nutrients such as nitrogen and potassium, deficiency symptoms develop predominantly in the older and mature leaves. This is a result of these nutrients being preferentially mobilized during times of nutrient stress from the older leaves to the newer leaves near the growing regions of the plant. Additionally, mobile nutrients newly acquired by the roots are also preferentially translocated to new leaves and the growing regions. Thus old and mature leaves are depleted of mobile nutrients during times of stress while the new leaves are maintained at a more favorable nutrient status.
The typical localization of deficiency symptoms of very weakly mobile nutrients such as calcium, boron, and iron is the opposite to that of the mobile nutrients; these deficiency symptoms are first displayed in the growing regions and new leaves while the old leaves remain in a favorable nutrient status. (This assumes that these plants started with sufficient nutrient, but ran out of nutrient as they developed). In plants growing very slowly for reasons other than nutrition (such as low light) a normally limiting supply of a nutrient could, under these conditions, be sufficient for the plant to slowly develop, maybe even without symptoms. This type of development is likely to occur in the case of weakly mobile nutrients because excess nutrients in the older leaves will eventually be mobilized to supply newly developing tissues. In contrast, a plant with a similar supply that is growing rapidly will develop severe deficiencies in the actively growing tissue such as leaf edges and the growing region of the plant. A classic example of this is calcium deficiency in vegetables such as lettuce where symptoms develop on the leaf margins (tip burn) and the growing region near the meristems. The maximal growth rate of lettuce is often limited by the internal translocation rate of calcium to the growing tissue rather than from a limited nutrient supply in the soil.
When moderately mobile nutrients such as sulfur and magnesium are the limiting nutrients of the system, deficiency symptoms are normally seen over the entire plant. However the growth rate and rate of nutrient availability can make a considerable difference on the locations at which the symptoms develop. If the nutrient supply is marginal compared to the growth rate, symptoms will appear on the older tissue, but if the nutrient supply is very low compared to the growth rate, or the nutrient is totally depleted, the younger tissue will become deficient first. "
I guess there are two different uses for mobile and immobile. And yea, hydro won't help the above type of mobility issues, but sounds like it will help the other.
Plant Physiology Online: Symptoms of Deficiency In Essential Minerals