Chlorophyll absorbs blue and red light
The green pigment, chlorophyll, plays a central role in photosynthesis. The fact that it is green means that it absorbs blue and red light and reflects green when it is illuminated by white (all wavelengths) light. The absorption spectrum you saw before for chlorophyll, is turned sideways below.
It shows two absorption maxima in the blue and red portions in the spectrum. Next to this, is an energy diagram that shows how an electron can be elevated to a higher energy level in the electron cloud of chlorophyll by absorbing a high energy photon. Blue is at the high-energy end of the spectrum, so light of this wavelength is responsible for this much excitation and explains the absorption peak in the blue. Red wavelengths are lower in energy and only boost the electron to a lower energy level than can blue light. This stable excitation state is responsible for the red absorption peak.
200 - 280 nm UVC ultraviolet range which is extremely harmful to plants because it is highly toxic.
280 - 315 nm Includes harmful UVB ultraviolet light which causes plants colors to fade.
315 - 380 nm Range of UVA ultraviolet light which is neither harmful nor beneficial to plant growth.
380 - 400 nm Start of visible light spectrum. Process of chlorophyll absorption begins. UV protected plastics ideally block out any light below this range.
400 - 520 nm This range includes violet, blue, and green bands. Peak absorption by chlorophyll occurs, and a strong influence on photosynthesis. (promotes vegetative growth)
520 - 610 nm This range includes the green, yellow, and orange bands and has less absorption by pigments.
610 - 720 nm This is the red band. Large amount of absorption by chlorophyll occurs, and most significant influence on photosynthesis. (promotes flowering and budding)
720 - 1000 nm There is little absorption by chlorophyll here. Flowering and germination is influenced. At the high end of the band is infrared, which is heat.
1000+ nm Totally infrared range. All energy absorbed at this point is converted to heat.