The Cannabinoids
Cannabis' notorious resin is a complex mixture of cannabinoids, terpenes, and waxes, etc. There are about 100 known cannabinoids that occur only in hemp, with the exception of Cannabichromene, which is found in a few other plants. The entire hemp plant contains several hundred known chemicals.
The cannabinoids are thought to be formed by condensation of monoterpene derivatives such as geraniol phosphate with a depside-type olivetolic acid. This leads initially to the formation of Cannabigerol (CBG) and Cannabichromene (CBC) and their carboxylic acids, then to Cannabidiolic Acid (CBDA), which undergoes ring closure to form TetraHydroCannabinol (THC) and its acid (THCA). The latter decarboxylates to form THC. Other biogenetic pathways featuring CBC have been proposed by De Faubert Maunder and by Turner and Hadley.
The acids comprise up to 40% of the cannabinoid content of young plants. THC dehydrogenates to form Cannabidiol (CBD). THC is a primary psychoactive cannabinoid. The minor constituent Cannabiverol (CBV) possesses only about 20% of THC’s activity. CBD and CBN are not psychoactive, but they have valuable medical properties.
Many synthetic analogs of THC are more or less potent than the parent molecule. The dimethylheptyl derivative is over 50 times more active, with effects lasting several days. Some nitrogen and sulfur analogs also are psychoactive.
The total synthesis of THC has been accomplished in many ways, most of which are difficult. However, the extraction of cannabinoids, their purification, isomerization and acetylation are easy experiments for dilettante souffleurs who would possess this elixir.
Extraction
Cannabis must be dried be it is extracted, because it is not possible to remove more than 50% of the cannabinoids from fresh material THC-Acid is difficult to extract If you plant to convert the THCA to THC, the plant material should be thoroughly decarboxylated by heating it under nitrogen at 105° C for 1 hour before performing a solvent extraction.
Chloroform is the most efficient solvent for the extraction of THC from cannabis. A single extraction will remove 98-99% of the cannabinoids within 30 minutes. A second extraction removes only 88-99% of the cannabinoids within 30 minutes. A second extraction removes 100% of the THC. Light petroleum ether (60-80°) also works well, but a single extraction removes only 88-95% of the cannabinoids; a double extraction removes up to 99%. Ethanol also can be used, but it removes ballast pigments and sugars which complicate the purification of the resin Extract the dried cannabis with a suitable solvent for several hours at room temperature or by refluxing. Filter through charcoal to clarify the solution, then chill overnight to precipitate waxes, then filter the solution again. Concentrate it to one-half volume, and extract it with 2% aqueous sodium sulfate (to prevent oxidation). Separate the aqueous layer, and strip the solvent. The residue is crude hemp oil.
The odoriferous terpenes can be removed by steam or vacuum distillation. Cautious distillation in vacuo yields a fraction of crude red oil (bp 100-220° C/3 mm). This can be purified by redistillation or column chromatography. Use ethanol to remove the residue from the flask while it is still hot. Filter the solution through charcoal, and strip the solvent. Distill the residue to yield pure red oil (bp 175-195° C /2 mm). Distillation must be stopped if smoke appears, indicating decomposition. Because THC is heat-sensitive, it is preferable to isolate the cannabinoids by column chromatography. The simplest method of column chromatography is performed with ethanol and ether extracts of hemp on alumina, yielding two major fractions: (1) chlorophyll, CBD, and CBN, and (2) THC. A second, more difficult method is performed on Florisil (use 10 times the weight of the oil) with the solvent system hexane:2% methanol. This yields a doubly-concentrated, viscous oil which can be repeatedly chromatographed on alumina to separate the THC and CBD.
Isomerization
The potency of marijuana can be increased by about 50% simply by simmering a water slurry of the material for 2 hours. Add water as necessary to maintain the level. Cool and filter the mixture, and refrigerate the aqueous solution. Dry the leaf material at low heat. Drink the tea before smoking the marijuana. The effects are much more intense and last longer than those from the untreated leaves. The boiling water treatment isomerizes the inactive CBD, and decarboxylates THCA to THC.
Although Cannabidiol (CBD) has no psychoactivity, it does antagonize THC and produces other valuable sedative, antibiotic, and anti-epileptic effects. CBD can be isomerized to THC. If the plant is Phenotype III (containing mainly CBD in its resin), isomerization can double the yield of THC.
The CBD fraction of column chromatography can be distilled (bp 187-190° C/2 mm; pale yellow resin) to purify it. Isomerization can be accomplished with any of several solvents and acids. Alcohol and sulfuric acid isomerizes only 50-60% of CBD to THC; p-TolueneSulfonic Acid (p-TSA) in petroleum ether or other light, non-polar solvent will convert 90% of CBD to THC upon refluxing 1 hour at 130° F.
Reflux 3 gr CBD in 100 ml dry benzene for 2 hours with 200 mg p-TSA monohydrate until the alkaline Beam test (5% KOH in ethanol) is negative (no color). The Beam test gives a deep violet color with CBD. Separate the upper layer, wash it with 5% sodium bicarbonate, wash again with water, and strip the solvent. The remaining viscous oil should give a negative reaction to the Beam test. The crude THC can be purified by distillation (bp 169-172° C/0.03 mm), or by chromatography in 25 ml pentane on 300 gr alumina. Elute with pentane 95:5 ether to yield fraction of CBD and THC. Combine the THC fractions and distill (bp 175-178° C/1 mm).
Reflux 2 gr CBD in 35 ml cyclohexane, and slowly add a few drops of sulfuric acid. Continue to reflux until the Beam test is negative. Separate the sulfuric acid from the reaction mixture. Wash the solution twice with aqueous sodium bicarbonate, the twice again with water. Purify by chromatography, or distill (bp 165° C/0.01 mm). Any unreacted CBD can be recycled.
Another method is to reflux a mixture of 6 gr dry pyridine hydrochloride and 3 gr CBD at 125° C until the Beam test is negative. Wash the reaction mixture with water to remove the pyridine, then extract the mixture with ether. Wash the ether with water, evaporate the ether, and distill the residue i.v. to yield pure THC.
Similarly, reflux 3 gr CBD in 150 ml ethanol with 50 ml 85% phosphoric acid until the Beam test is negative. Work up the reaction mixture, and purify the THC.
Alternatively, reflux 3 gr CBD in 100 ml absolute ethanol containing 0.05% HCl for 19 hours. Extract the ether, wash the ether with water, dry, evaporate, and chromatograph on 400 gr alumina to yield:
(a) 0.5 gr 1-EthoxyHexaHydro-CBN (EHH-CBN: mp 86-87° C); elute with pentane 98:2 ether. Recrystalize from methanol and water.
(b) 2 gr THC; elute with pentane 95:5 ether. Repeated chromatography will separate the less polar forms.
(c) 0.5 gr EHH-CBN, eluted with pentane 93:7 ether. It can be isomerized to THC by refluxing in benzene for 2 hours. Cool the reaction mixture, wash it with water; separate, dry, and strip the solvent layer i.v. to yield THC.
CBD also can be isomerized by irradiation of a cyclohexane solution in a quartz vessel with a mercury lamp (235-265 nm) for 20 minutes. Workup of the reaction mixture yields 7-13% THC.