Flaming Pie
Well-Known Member
Many new growers don't understand the basics of plant growth. Marijuana is a plant, and a basic understanding of the biology of plants will help every aspect of your grow.
The three major functions that are basic to plant growth and development are:
This process is directly dependent on the supply of water, light, and carbon dioxide. Limiting any one of the factors on the left side of the equation (carbon dioxide, water, or light) can limit photosynthesis regardless of the availability of the other factors. An implication of drought or severe restrictions on landscape irrigation is a reduction in photosynthesis and thus a decrease in plant vigor and growth.
In a tightly closed greenhouse there can be very little fresh air infiltration and carbon dioxide levels can become limiting, thus limiting plant growth. In the winter, many large commercial greenhouses provide supplemental carbon dioxide to stimulate plant growth.
The rate of photosynthesis is somewhat temperature dependent. For example, with tomatoes, when temperatures rise above 96°F the rate of food used by respiration rises above the rate of which food is manufactured by photosynthesis. Plant growth comes to a stop and produce loses its sweetness. Most other plants are similar. [Figure 3]
Figure 3. For the tomato plant, rates of photosynthesis and respiration both increase with increasing temperatures. As the temperature approaches 96°F, the rate of photosynthesis levels off, while the rate of respiration continues to rise.
[h=2]Respiration[/h]In respiration, plants (and animals) convert the sugars (photosynthates) back into energy for growth and other life processes (metabolic processes). The chemical equation for respiration shows that the photosynthates are combined with oxygen releasing energy, carbon dioxide, and water. A simple chemical equation for respiration is given below. Notice that the equation for respiration is the opposite of that for photosynthesis. [Figure 4.]
Chemically speaking, the process is similar to the oxidation that occurs as wood is burned, producing heat. When compounds combine with oxygen, the process is often referred to as burning, for example, athletes burn energy (sugars) as they exercise. The harder they exercise, the more sugars they burn so the more oxygen they need. That is why at full speed, they are breathing very fast. Athletes take up oxygen through their lungs. Plants take up oxygen through the stomata in their leaves and through their roots.
Again, respiration is the burning of photosynthates for energy to grow and to do the internal work of living. It is very important to understand that both plants and animals (including microorganisms) need oxygen for respiration. This is why overly wet or saturated soils are detrimental to root growth and function, as well as the decomposition processes carried out by microorganisms in the soil.
The same principles regarding limiting factors are valid for both photosynthesis and respiration.
The three major functions that are basic to plant growth and development are:
- Photosynthesis The process of capturing light energy and converting it to sugar energy, in the presence of chlorophyll using carbon dioxide and water.
- Respiration The process of metabolizing (burning) sugars to yield energy for growth, reproduction, and other life processes.
- Transpiration The loss of water vapor through the stomata of leaves.
Photosynthesis literally means to put together with light. It occurs only in the chloroplasts, tiny sub-cellular structures contained in the cells of leaves and green stems. A simple chemical equation for photosynthesis is given in Figure 2.
This process is directly dependent on the supply of water, light, and carbon dioxide. Limiting any one of the factors on the left side of the equation (carbon dioxide, water, or light) can limit photosynthesis regardless of the availability of the other factors. An implication of drought or severe restrictions on landscape irrigation is a reduction in photosynthesis and thus a decrease in plant vigor and growth.
In a tightly closed greenhouse there can be very little fresh air infiltration and carbon dioxide levels can become limiting, thus limiting plant growth. In the winter, many large commercial greenhouses provide supplemental carbon dioxide to stimulate plant growth.
The rate of photosynthesis is somewhat temperature dependent. For example, with tomatoes, when temperatures rise above 96°F the rate of food used by respiration rises above the rate of which food is manufactured by photosynthesis. Plant growth comes to a stop and produce loses its sweetness. Most other plants are similar. [Figure 3]
Figure 3. For the tomato plant, rates of photosynthesis and respiration both increase with increasing temperatures. As the temperature approaches 96°F, the rate of photosynthesis levels off, while the rate of respiration continues to rise.
Chemically speaking, the process is similar to the oxidation that occurs as wood is burned, producing heat. When compounds combine with oxygen, the process is often referred to as burning, for example, athletes burn energy (sugars) as they exercise. The harder they exercise, the more sugars they burn so the more oxygen they need. That is why at full speed, they are breathing very fast. Athletes take up oxygen through their lungs. Plants take up oxygen through the stomata in their leaves and through their roots.
Again, respiration is the burning of photosynthates for energy to grow and to do the internal work of living. It is very important to understand that both plants and animals (including microorganisms) need oxygen for respiration. This is why overly wet or saturated soils are detrimental to root growth and function, as well as the decomposition processes carried out by microorganisms in the soil.
The same principles regarding limiting factors are valid for both photosynthesis and respiration.
Table 1. Comparison of photosynthesis and respiration |