How to Synthesize LS Diethylamide (LSD)

Status
Not open for further replies.

DarthD3vl

Well-Known Member
Lol this is on like every drug site on the web already....

Its Originally published in 1967 as "The Psychedelic Guide to Preparation Eucharist" by Robert E. Brown
 

2fast92

Well-Known Member
Yes, it's allowed. I'm not selling, promoting, or telling anyone where to get anything. It's simply a recipe.

@DarthD3vl. I'm sorry for posting this since it's everywhere then. It didn't take me 5 hours to type this or anything. I didn't get it from that source either, I got it from a friend. I guess I should just delete it then. Right?
 

DarthD3vl

Well-Known Member
Yes, it's allowed. I'm not selling, promoting, or telling anyone where to get anything. It's simply a recipe.

@DarthD3vl. I'm sorry for posting this since it's everywhere then. It didn't take me 5 hours to type this or anything. I didn't get it from that source either, I got it from a friend.
well check this out look pretty similar. starts with same sentence.

Synthesis of LSD-25

Originally published in 1967 as "The Psychedelic Guide to Preparation Eucharist" by Robert E. Brown.
Preparatory arrangements

Starting material may be any lysergic acid derivative,from Claviceps purpures(ergot) on rye grain or from culture, from Ipomea (morning glory) seeds, or from synthetic sources. Preparation #1 uses any amide, or lysergic acid as starting material. Preparations #2 and #3 must start with lysergic acid only, prepared from the amides as follows:
10 g of any lysergic acid amide from various natural sources is dissolved in 200ml of mathanoic KOH solution and the methanol removed immediately in vacuum. The residue is treated with 200ml of an 8% aqueous solution of KOH and the mixture heated on a steam bath for one hour. A stream of N2 gas is passed through the flask during heating and the evolved NH3 in the gas stream may be titrated in HCL to follow the reaction. The alkaline solution is made neutral to congo red with tartaric acid,filtered,cleaned by extracting with ether, the aqueous solution filtered and evaporated. Digest with MeOH to remove some of the colored material from the crystals of lysergic acid.
Arrange the lighting in the laboratory similarly to that of a darkroom. Use photographic red and yellow safety lights since lysergic acid derivatives are decomposed by light. A weak, long wave ultraviolet source is conveniently made from the purple glass filter used in the 1950 ford dash lighting system. A small tungsten bulb will provide enough light.
Have plenty of aluminum foil handy to cover reagents and products when light is present. Rubber gloves must be worn due to the highly poisonous nature of ergot alkaloids. A hair dryer, or, much better, a flash evaporator, is necessary to speed up steps where evaporation is necessary.
Preparation #1

Step I - Use Yellow Light
Place one volume of powdered ergot alkaloid material in a tiny roundbottom flask and add two volumes of anhydrous hydrazine. An alternate procedure uses a sealed tube in which the reagents are heated at 112°C. The mixture is refluxed (or heated) for 30 minutes. With an open condenser, keep an inert atmosphere on the reaction. Add 1.5 volumes H2O and boil 15 minutes. On cooling in the refrigerator, isolysergic acid hydrazide is crystallized.
Step II - Use Red Light
Chill all reagents and have ice handy. Dissolve 2.82 g of the hydrazide rapidly in 100ml 0.1 N ice-cold HCl using an ice bath to keep the reaction vessel at 0°C. 100ml ice-cold 0.1 N NaNO2 is added and after 2 to 3 minutes vigorous stirring, 130ml more HCl is added dropwise with vigorous stirring again in an ice bath. After 5 minutes, neutralize the solution with NaHCO3 saturated sol. and extract with ether. Remove the aqueous solution and try to dissolve the gummy substance in ether. Adjust the ether solution by adding 3 g diethylamine per 39ml ether extract. Allow to stand in dark, gradually warming up to 20°C over a period of 24 hours. Evaporate in vacuum and treat as indicated in the purification section for conversion of iso-lysergic amides to lysergic acid amides.
Preparation # 2

Step I - Use Yellow Light
5.36 g of d-lysergic acid are suspended in 125ml of actonitrile and the suspension cooled to about -20°C in a bath of acetone cooled with dry ice. To the suspension is added a cold -20°C solution of 8.82 g of trifluoroacetic anhydride in 75ml of acetonitrile. The mixture is allowed to stand at -20°C for about 1.5 hours during which time the suspended material dissolves, and the d-lysergic acid is converted to the mixture anhydride of lysergic and trifluoroacetic acids. The mixed anhydride can be separated in the form of an oil by evaporating the solvent in vacuum at a temperature below about 0°C. Everything must be kept anhydrous.
Step II - Use Red Light
The solution of mixed anhydrides in acetonitrile from Step I is added to 150ml of acetonitrile containing 7.6 g of diethylamine. The mixture is held in the dark at room temperature for about 2 hours. The acetonitrile is evaporated in vacuum, leaving a residue of LSD-25 plus other impurities. The residue is dissolved in 150ml of chloroform and 20ml of ice water. The chloroform layer is removed and the aqueous layer is extracted with several portions of chloroform. The chloroform portions are combined and in turn,washed with four 50ml portions of ice-water. The chloroform solution is then dried over anhydrous Na2SO4 and evaporated in vacuum.
Preparation # 3

The following procedure gives good yield and is very fast with little iso-lysergic acid being produced, however, the stoichometry must be exact or yields will drop.
Step I - Use White Light
Sulfur trioxide is produced in an anhydrous state by carefully decomposing anhydrous ferric sulfate at approximately 480°C. Store under anhydrous conditions.
Step II - Use White Light
A carefully dried 22 liter RB flask fitted with an ice bath, condenser, dropping funnel and mechanical stirrer is charged with 10 to 11 liters of dimethyformamide (freshly distilled under reduced pressure). The condenser and dropping funnel are both protected against atmospheric moisture. 2 lb. of sulfur trioxide (Sulfan B) are introduced dropwise, very cautiously with stirring, during 4 to 5 hours. The temperature is kept at 0-5 degrees throughout the addition. After the addition is complete, the mixture is stirred for 1-2 hours until some separated,crystalline sulfur trioxide-dimethylformamide complex has dissolved. The reagent is transferred to an air-tight automatic pipette for convenient dispensing, and kept in the cold. Although the reagent, which is colorless may change to yellow and red, its efficiency remains unimpaired for three to four months in cold storage. An aliguot is dissolved in water and titrated with standard NaOH to a phenolphthalein end point.
Step III - Use Red Light
A solution of 7.15 g of d-lysergic acid monohydrate (25 mmol) and 1.06 g of lithium hydroxide hydrate (25 mmol) in 200 L of MeOH is prepared. The solution is distilled on the steam bath under reduced pressure. The residue of glass-like lithium lysergate is dissolved in 400ml of anhydrous dimethyl formamide. From this solution about 200ml of the dimethyl formamide is distilled off at 15mm pressure through a 12- inch helices packed column. The resulting anhydrous solution of lithium lysergate left behind is cooled to 0 degrees and, with stirring, treated rapidly with 500ml of SO3-DMF solution (1.00 M soln). The mixture is stirred in the cold for 10 minutes and then 9.14 g (125.0 mmol) of diethylamine is added. The stirring and cooling are continued for 10 minutes longer, when 400ml of water is added to decompose the reaction complex. After mixing thoroughly, 200ml of saturated aqueous NaCl solution is added. The amide product is isolated by repeated extraction with 500ml portions of ethylene dicloride. The combined extract is dried and then concentrated to a syrup under reduced pressure. Do not heat the syrup during concentration. The LSD may crystallize out, but the crystals and the mother liquor may be chromatographed according to the instructions on purification.
Purification of LSD-25

The material obtained by any of these three preparations may contain both lysergic acid and iso-lysergic acid amides. Preparation #1 contains mostly iso-lysergic diethylamide and must be converted prior to separation. For this material, go to Step II first.
Step I - Use Darkroom and follow with Long Wave UV
The material is dissolved in a three to one mixture of benzene in chloroform. Pack a chromatography column with a slurry of basic alumina in benzene so that a one-inch column is six inches long. Drain the solvent to the top of the alumina column and carefully add an aliquot of the LSD-solvent solution containing 50ml of solvent and 1 g LSD. Run this solution through the column, following the fastest moving blue fluorescent band. After it has been collected, strip the remaining material from the column by washing with MeOH. Use the UV light sparingly during this procedure to prevent excessive damage to the compounds. Evaporate the second fraction in vacuum and set aside for Step II. The fraction containing the pure LSD is concentrated in vacuum and the syrup will crystallize slowly. This material may be converted to the tartaric acid and the LSD tartrate conveniently crystallized, mp 190-196°C
Step II - Use Red Light
Dissolve the residue derived from the methanol stripping of the column in a minimum amount of alcohol. Add twice that volume of 4 N alcoholic KOH solution and allow the mixture to stand at room temperature for several hours. Neutralize with dilute HCl, make slightly basic with NH4OH and extract with chloroform or ethylene dicloride as in preparations #1 or #2. Evaporate in vacuum and chromatograph as in the previous step.
Salvage
Neutralize all leftover solutions and residues with NaHCO3 and evaporate in vacuum to low volume. Extract with ammoniacal chloroform and evaporate the extract to dryness. This residue may be run through the whole process again and more LSD will be produced.
Storage and use

Lysergic acid compounds (among them LSD) are unstable to heat, light and oxygen. In any form it helps to add ascorbic acid as an anti-oxidant, keeping the container tightly closed, light-tight with aluminum foil, and in refrigerator.
Packaging for use presents many possibilities, partially due to the incredibly small dosage involved. First a bio-assay of the solvent is made, then it may be measured by the volume of the solvent it is in. The solvent may be evaporated onto a weighed, calculated amount of some inactive powder such as chalk. sugar or baking soda. This bulky powder may be easily encapsulated in weightable portions. It is advantageous to add a trace of dry ascorbic acid to the dried powders. Sugar cubes offer a handy but extremely notorious method of dispensing. Other methods are without number, here being offered just a few occasionally used by the criminal element. Gelatin capsules are coated with the liquid solution and the capsules filled with an inert substance. Decoys such as this inert mixture might include a trace of brown color, a trace of quinine for fluorescence, and a trace of some relatively non-toxic compound which nearly mimicas the infra-red spectrum of LSD. For transport, a smuggler might evaporate a considerable amount onto a pocket handkerchief or onto a sheet of paper, providing the solution was properly decolorized before such treatment. These underhanded methods are used by criminals to avoid punitive action by law enforcement enthusiasts.
One gram of pure LSD, if used in a truly enlightened, careful manner can be the door to a magnificent experience to nearly 3,000 individuals. Used furtively and in ignorance, the same amount may bring terrible confusion and abject terror to nearly one-third of these.
 

2fast92

Well-Known Member
It worked for me and that's all I care about. I just thought I would share the wealth. I haven't DONE it personally because I don't have access to the materials but my friend does and he did it with me watching him and we both enjoyed the product. It worked for us.
 

DarthD3vl

Well-Known Member
I said the fester method was worthless. I own it. this is a different method not written by uncle fester, but i already posted who this was originally written by... whether this method is actually good or not im not sure.. parts of it are right, but then some parts of the completely useless fester book are right... soo...

Im waiting for our neighborhood chemists to show up and say wether its useable or not..
 

2fast92

Well-Known Member
I said the fester method was worthless. I own it. this is a different method not written by uncle fester, but i already posted who this was originally written by... whether this method is actually good or not im not sure.. parts of it are right, but then some parts of the completely useless fester book are right... soo...

Im waiting for our neighborhood chemists to show up and say wether its useable or not..
Oh true, sorry for getting annoyed then. I don't know exactly how it works becaue like I said I haven't done personally but I resided over my freind who did and he has a PhD in chemical engineering. The product was quality but I can't say he followed all the steps to the letter. He could have tweaked a little bit.
 

2fast92

Well-Known Member
Sure, a vial. But he's made as much as a water bottle full. I don't know how much more reagants were needed and such to make more product.
 

DarthD3vl

Well-Known Member
Sure, a vial. But he's made as much as a water bottle full. I don't know how much more reagants were needed and such to make more product.
just asking since that method states end product of 1 gram which is around 4,000 to 10,000 hits of lsd.
 

2fast92

Well-Known Member
just asking since that method states end product of 1 gram which is around 4,000 to 10,000 hits of lsd.
Yea, I didn't get to keep any of it. I did it with him when he was done. I have no idea what he did with the rest. I imagine he still has the vial and the water bottle full because that would take a million years to take.
 
Status
Not open for further replies.
Top