0calli
Well-Known Member
Yeah Ocalli, the blah blah behind it is linked below. I use MH side lighting at a 30 degree angle during flower to mimic the late year sun for angle to the plants and UV exposure. My outdoor buds are definitely more potent, imo, and so are the dual spectrum buds.too much Kush.
it's all from breeding, UV will only possibly increase the volume of resin not the percentage of THC in it.
"Ultraviolet radiation
Another stress to which plants are subject results from their daily exposure to sunlight. While necessary to sustain photosynthesis, natural light contains biologically destructive ultraviolet radiation. This selective pressure has apparently affected the evolution of certain defenses, among them, a chemical screening functionally analogous to the pigmentation of human skin. A preliminary investigation (Pate 1983) indicated that, in areas of high ultraviolet radiation exposure, the UV-B (280-315 nm) absorption properties of THC may have conferred an evolutionary advantage to Cannabis capable of greater production of this compound from biogenetic precursor CBD. The extent to which this production is also influenced by environmental UV-B induced stress has been experimentally determined by Lydon et al. (1987). Their experiments demonstrate that under conditions of high UV-B exposure, drug-type Cannabis produces significantly greater quantities of THC. They have also demonstrated the chemical lability of CBD upon exposure to UV-B (Lydon and Teramura 1987), in contrast to the stability of THC and CBC. However, studies by Brenneisen (1984) have shown only a minor difference in UV-B absorption between THC and CBD, and the absorptive properties of CBC proved considerably greater than either. Perhaps the relationship between the cannabinoids and UV-B is not so direct as first supposed. Two other explanations must now be considered. Even if CBD absorbs on par with THC, in areas of high ambient UV-B, the former compound may be more rapidly degraded. This could lower the availability of CBD present or render it the less energetically efficient compound to produce by the plant. Alternatively, the greater UV-B absorbency of CBC compared to THC and the relative stability of CBC compared to CBD might nominate this compound as the protective screening substance. The presence of large amounts of THC would then have to be explained as merely an accumulated storage compound at the end of the enzyme-mediated cannabinoid pathway. However, further work is required to resolve the fact that Lydon's (1985) experiments did not show a commensurate increase in CBC production with increased UV-B exposure."