Corrigan makes a point of saying that the
pathways hypothesized to facilitate retro-integration of viral — or vaccine — RNA into DNA “are not unknown to people who understand molecular biology at a deeper level.”
Judging by pharmaceutical company executives’ willingness to overlook mRNA vaccines’ long-term — and possibly multigenerational — risks, they must be similarly entranced by dollar-sign visions of a never-ending pipeline of “
plug and play” mRNA products.
(Sorry, ran into the number of characters limit.)
Yes, cross transfer of DNA ha occurred. It happens with bacteria and lower life forms. How often does it happen with higher lifeforms? Not a lot of evidence that it does happen. But, Canadian researchers have had their "Aha " moment and have been vindicated.
These fish stole an antifreeze gene from another fish and became natural GMOs
Millions of years before scientists created genetically modified Atlantic salmon with genes from two other fish, nature created genetically modified smelt with a gene from herring, growing evidence shows.
And now the Canadian scientists who first proposed that controversial idea say they have a hunch how nature might have done it.
A new study by Queen's University researchers Laurie Graham and Peter Davies finds "conclusive" evidence for the controversial idea that the antifreeze gene that helps rainbow smelt survive icy coastal waters originally came from herring and was somehow stolen by smelt about 20 million years ago.
"We've got other fish that are more closely related to these species that make completely different kinds of antifreeze protein. So this doesn't really make sense on an evolutionary basis if everybody's inheriting their antifreeze protein from their ancestors."
Skeptics weren't convinced, so the researchers looked for more evidence. Closely related fish such as different types of smelt tend to have the same genes in the same order. And the researcher found that was the case — except for the antifreeze gene, which was found between two genes that are normally next to each other in other smelt.
"That's what you would expect when you have a gene that's just sort of been pasted into a genome through horizontal gene transfer."
Then, recently, the researchers heard that the genome of Atlantic herring was published in a public database.
Remember those transposable elements that often jump between organisms? They can also be used as a fingerprint for a particular organism. Herring have certain transposable elements pasted hundreds of times all over their genome, including in and around their eight antifreeze genes.
When the researchers looked at the smelt's single antifreeze gene, it had three of those herring transposable elements attached, Graham said. "So it was like a little tag to say, 'Hey, I'm from herring.'" Those transposable elements weren't found anywhere else in the smelt.
The researchers say it's conclusive evidence that the antifreeze gene moved between the two fish via horizontal gene transfer and that it went from herring to smelt and not vice versa.
How did the gene jump species?
When the researchers' previous papers went through peer review, one of the questions reviewers had was how the gene might have moved between species, so they sought to come up with a hypothesis.
One possibility, they thought, was it might be similar to techniques used in the lab to create genetically modified animals. One called "sperm-mediated gene transfer" involves mixing sperm with the DNA you want to introduce, then using it to fertilize an egg.
"And we thought, 'Well, couldn't this also happen in nature?" Graham recalled.
Fish and many other marine animals have external fertilization, where eggs and sperm — known as milt — are released into the water at the same time in massive quantities during spawning, and some of them combine to produce offspring.
Graham noted that when herring spawn on Canada's Atlantic and Pacific coasts, "you can actually see the ocean is sort of stained white from all of the milt that the male herring are releasing."
The sperm breaks apart after a few hours, releasing DNA into the water. And the researchers proposed that during one of these events, herring DNA may have found its way into rainbow smelt eggs or sperm.
So could the little Spike Protein Snippet make its way into our DNA? Hang on, let me think what we would need to do it.