Finally, Roger Haring, an agronomist working in our laboratory, decided to test the effects of the paramagnetic force on growing plants as well. Haring decided to isolate the paramagnetic force from the soil by surrounding a mere 3 grams of paramagnetic, rock dust with parafilm. With previous experience growing mung bean, Vigna radiata, he decided to continue his work with this Asian crop by testing its interaction with the paramagnetic force. Since previous results had already shown that paramagnetism has beneficial effects on plants through out their life cycle, he chose growing mung bean, Vigna radiata, he decided to continue his work with this Asian crop by testing its interaction with the paramagnetic force. Since previous results had already shown that paramagnetism has beneficial effects on plants through out their life cycle, he chose solely to focus in on germination rates. For this reason, Haring ran his experiments for only 10 days and then observed the effect paramagnetism had on the seedling as well as the early stem and leaves. Even though his results were modest, owing to the short periods in which he ran the experiments, he still recorded significant effects.
Haring germinated mung bean seeds on moist cotton media with or without an adjacent pouch of paramagnetic soil wrapped in parafilm. He repeated this experiment a total of 15 times. Haring found that he could obtain, on average, a 19 percent increase in stem length, a 15 percent increase in leaf length, a 17 percent increase in total plant biomass and a 3 percent increase in the dry weight of the early roots after only 10 days. His findings are represented in Figure 5. The dry-weight increase of the early roots, though small, surprised us because the roots had absolutely no soil in which to grow. For this reason, we might not expect any difference to occur at this stage of development.
We have found that it is often the case that paramagnetism exerts its effects on the roots -through the roots may be more appropriate terminology. This is a trend that had been noted before the round of experiments just reported, and the results from these three experiments help contribute to this hypothesis. Both Horvath and Whitty found a significant difference between root development in their most recent experiments; however, the information they reported was only observational (qualitative versus quantitative) which far from disqualifying these results only prevents their publication in scientific journals. Even Haring achieved a small but surprising increase in dry root weight of mung bean after only a 10 day experiment with no soil.
The paramagnetic effect exerting its force selectively or more powerfully on the root system shouldn't be difficult to understand. The roots are in closer contact with the paramagnetic soil than the stem or leaves. Large, healthy roots would naturally lead to more vigorous growth of the plant above the soil as well, but it seems these benefits may only be a secondary effect. The primary effect appears to be on the roots, and it is strongly felt that long term controlled studies would reveal properties that would hold for all plants.